600 research outputs found

    Fatal lymphoproliferation and acute monocytic leukemia-like disease following infectious mononucleosis in the elderly

    Get PDF
    Three elderly patients are reported, in whom serologically confirmed recent infectious mononucleosis is followed by fatal lymphoproliferation (case 1), by acute monocytic leukemia (case 2), and by acute probably monocytic leukemia (case 3)

    Feasibility of Inconspicuous GAN-generated Adversarial Patches against Object Detection

    Get PDF
    Standard approaches for adversarial patch generation lead to noisy conspicuous patterns, which are easily recognizable by humans. Recent research has proposed several approaches to generate naturalistic patches using generative adversarial networks (GANs), yet only a few of them were evaluated on the object detection use case. Moreover, the state of the art mostly focuses on suppressing a single large bounding box in input by overlapping it with the patch directly. Suppressing objects near the patch is a different, more complex task. In this work, we have evaluated the existing approaches to generate inconspicuous patches. We have adapted methods, originally developed for different computer vision tasks, to the object detection use case with YOLOv3 and the COCO dataset. We have evaluated two approaches to generate naturalistic patches: by incorporating patch generation into the GAN training process and by using the pretrained GAN. For both cases, we have assessed a trade-off between performance and naturalistic patch appearance. Our experiments have shown, that using a pre-trained GAN helps to gain realistic-looking patches while preserving the performance similar to conventional adversarial patches

    A Realism Metric for Generated LiDAR Point Clouds

    Get PDF
    A considerable amount of research is concerned with the generation of realistic sensor data. LiDAR point clouds are generated by complex simulations or learned generative models. The generated data is usually exploited to enable or improve downstream perception algorithms. Two major questions arise from these procedures: First, how to evaluate the realism of the generated data? Second, does more realistic data also lead to better perception performance? This paper addresses both questions and presents a novel metric to quantify the realism of LiDAR point clouds. Relevant features are learned from real-world and synthetic point clouds by training on a proxy classification task. In a series of experiments, we demonstrate the application of our metric to determine the realism of generated LiDAR data and compare the realism estimation of our metric to the performance of a segmentation model. We confirm that our metric provides an indication for the downstream segmentation performance

    Three strongly correlated charged bosons in a one-dimensional harmonic trap: natural orbital occupancies

    Full text link
    We study a one-dimensional system composed of three charged bosons confined in an external harmonic potential. More precisely, we investigate the ground-state correlation properties of the system, paying particular attention to the strong-interaction limit. We explain for the first time the nature of the degeneracies appearing in this limit in the spectrum of the reduced density matrix. An explicit representation of the asymptotic natural orbitals and their occupancies is given in terms of some integral equations.Comment: 6 pages, 4 figures, To appear in European Physical Journal

    An RNA in situ hybridization protocol optimized for monocot tissue

    Get PDF
    RNA in situ hybridization can be time-consuming and difficult to troubleshoot. Here, we provide an optimized protocol for maize leaf tissue, though it can be applied to other plant tissues such as shoot apical meristems, embryos, and floral organs. We generate three >100 bp unique antisense probes for each gene of interest and hybridize them to tissue sections

    Cyclotron resonance of the quasi-two-dimensional electron gas at Hg1-xCdxTe grain boundaries

    Get PDF
    The magnetotransmission of a p-type Hg0.766Cd0.234Te bicrystal containing a single grain boundary with an inversion layer has been investigated in the submillimetre wavelength range. For the first time the cyclotron resonance lines belonging to the various electric subbands of a quasi-two-dimensional carrier system at a grain boundary could be detected. The measured cyclotron masses and the subband densities determined from Shubnikov-de Haas experiments are compared with theoretical predictions and it is found that the data can be explained very well within the framework of a triangular well approximation model which allows for non-parabolic effects

    Bose-Hubbard model with occupation dependent parameters

    Full text link
    We study the ground-state properties of ultracold bosons in an optical lattice in the regime of strong interactions. The system is described by a non-standard Bose-Hubbard model with both occupation-dependent tunneling and on-site interaction. We find that for sufficiently strong coupling the system features a phase-transition from a Mott insulator with one particle per site to a superfluid of spatially extended particle pairs living on top of the Mott background -- instead of the usual transition to a superfluid of single particles/holes. Increasing the interaction further, a superfluid of particle pairs localized on a single site (rather than being extended) on top of the Mott background appears. This happens at the same interaction strength where the Mott-insulator phase with 2 particles per site is destroyed completely by particle-hole fluctuations for arbitrarily small tunneling. In another regime, characterized by weak interaction, but high occupation numbers, we observe a dynamical instability in the superfluid excitation spectrum. The new ground state is a superfluid, forming a 2D slab, localized along one spatial direction that is spontaneously chosen.Comment: 16 pages, 4 figure
    corecore